martes, 16 de junio de 2009

bacilos

Bacilo
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Los bacilos son bacterias que tienen forma de bastón, cuando se observan al microscopio.
Los bacilos se suelen dividir en:
Bacilos Gram positivos: fijan el violeta de genciana (tinción de Gram) en la pared celular porque carecen de capa de lipopolisacárido.
Bacilos Gram negativos: no fijan el violeta de genciana porque poseen la capa de lipopolisacárido(peptidoglicano).
Aunque muchos bacilos son patógenos para el ser humano, algunos no hacen daño, pues son los encargados de producir algunos productos lácteos como el yogurt (lactobacilos).

Ejemplos [editar]
A lo largo de la historia de la medicina y de la microbiología, según se iban descubriendo los bacilos, adoptaban el nombre del médico que los descubría, por ejemplo:
Bacilo de Abel: Klebsiella ozaenae
Bacilo de Achalme: B. perfrigens
Bacilo de Aertrycke: Salmonella
Bacilo de Bang: B. abortus
Bacilo de Ducrey: H. ducreyi
Bacilo de Eberth: S. typhi
Bacilo de Hansen: M. leprae
Bacilo de Klebs-Löffler: C. diphtherilllae
Bacilo de Koch: M. tuberculosis
Bacilo de Morax: Género Moraxella
Bacilo de Yersin: Y. pestis

cocos

Coco, tipo morfológico de bacteria. Tiene forma más o menos esférica (ninguna de sus dimensiones predomina claramente sobre las otras).
Diplococo: estos cocos se dividen en un sólo plano formando parejas, y dan la impresión de un grano de café, entre éstos podemos citar a los meningococos y gonococos.
Algunos ocasionan enfermedades a los humanos (Ej:neumococo y estafilococo) también es causante de enfermendades como el de la meningitis, otros resultan inocuos o incluso beneficiosos.
Los cocos se dividen en:
Diplococos: Son pares.
Estreptococos: En cadena.
Estafilococos: En racimo.
Tetradas: En número de 4.
Sarcinas: En paquetes.

tincion de gram




La tinción de Gram o coloración Gram es un tipo de tinción diferencial empleado en microbiología para la visualización de bacterias, sobre todo en muestras clínicas. Debe su nombre al bacteriólogo danés Christian Gram, que desarrolló la técnica en 1884. Se utiliza tanto para poder referirse a la morfología celular bacteriana como para poder realizar una primera aproximación a la diferenciación bacteriana, considerándose Bacteria Gram positiva a las bacterias que se visualizan de color violeta y Bacteria Gram negativa a las que se visualizan de color rosa.
Contenido[
ocultar]
1 Protocolo
1.1 Explicación
2 Teorías
3 Técnica de la coloración gram
3.1 Fijar un frotis
3.2 Tinción
3.3 Enjuague
3.4 Mordiente
3.5 Decoloración
3.6 Lavado y secado
3.7 Tinción de contraste
3.8 Nuevo enjuague
4 Bacterias resistentes a la tinción Gram
5 Utilidades
6 Fundamentos de diferenciación de Gram positivo y Gram negativo
7 Causas que alteran la tinción de Gram
//

Protocolo
Recoger muestras
Hacer el extendido en espiral
Dejar secar a temperatura ambiente
Fijar la muestra con metanol durante un minuto o al calor (flameado 3 veces aprox.)
Agregar azul violeta (
cristal violeta o violeta de genciana) y esperar 1 min. Este tinte (al final del procedimieto) dejará de color morado solo a las bacterias Gram positivas.
Enjuagar con agua.
Agregar
lugol y esperar 30 segundos
Enjuagar con agua.
Agregar
alcohol acetona y esperar 15 s
Enjuagar con agua.
Agregar
safranina y esperar 1 min Este tinte dejará de color rosado las bacterias Gram negativas.
Enjuagar con agua.
Para observar al microscopio óptico es conveniente hacerlo a 100x con aceite de inmersión

Explicación
El cristal violeta (colorante catiónico) penetra en todas las células bacterianas (tanto Gram positivas como Gram negativas).
El lugol está formado por I2 (
yodo) en equilibrio con KI (yoduro de potasio), el cual está presente para solubilizar el yodo. El I2 entra en las células y forma un complejo insoluble en solución acuosa con el cristal violeta.
La mezcla de alcohol-acetona que se agrega, sirve para realizar la decoloración, ya que en la misma es soluble el complejo I2/cristal violeta. Los organismos Gram positivos no se decoloran, mientras que los Gram negativos sí lo hacen.
Para poner de manifiesto las células Gram negativas se utiliza una coloración de contraste. Habitualmente es un colorante de color rojo, como la safranina o la
fucsina. Después de la coloración de contraste las células Gram negativas son rojas, mientras que las Gram positivas permanecen azules.
La safranina puede o no utilizarse, no es crucial para la técnica. Sirve para hacer una tinción de contraste que pone de manifiesto las bacterias Gram negativas. Al término del protocolo, las Gram positivas se verán azúl-violáceas y las Gram negativas, se verán rosas (si no se hizo la tinción de contraste) o rojas (si se usó, por ejemplo, safranina)
Esta importante coloración diferencial fue descubierta por Hans Christian Gram en 1884. En este método de tinción, la extensión bacteriana se cubre con solución de uno de los colorantes de violeta de metilo, que se deja actuar durante un lapso determinado. Se escurre luego el exceso de violeta de metilo y se añade luego una solución de yodo, que se deja durante el mismo tiempo que la anterior; después se lava el portaobjetos con alcohol hasta que éste no arrastre más colorante. Sigue a tal tratamiento una coloración de contraste, como safranina, fucsina fenicada diluida, pardo Bismarck, pironin B o hasta inclusive verde de malaquita.
Algunos microorganismos retienen el colorante violeta, aún después de tratarlos con un decolorante, y el color no se modifica al añadir éste; otros pierden con facilidad el primer tinte, y toman el segundo.
Los que fijan el violeta, se califican de grampositivos, y los que pierden la primera coloración y retienen la segunda, de gramnegativos. Basándonos pues, en la reacción Gram, podemos clasificar a los microorganismos en uno de los dos grupos.
Los colorantes de
p-rosanilina son los que mejores resultados dan en la coloración Gram. Los representantes más usados de este grupo son violeta de metilo y violeta cristal o de genciana. En realidad, violeta de metilo es el nombre atribuido al compuesto tetrametil-p-rosanilina.
El matiz de color de la p-rosanilina se intensifica al aumentar el número de grupos metilo en la molécula; por consiguiente, de los tres grupos, el tono más oscuro es la
hexametil-p-rosanilina (violeta cristal), y el tinte más ligero, la tetrametil-p-rosanilina (violeta de metilo). Los nombres violeta de metilo 3R, 2R, R, B, 2B, 3B, etc., se refieren al número de grupos metilo contenidos. La letra R indica matices rojos, y la letra B, tonos azules. El violeta de cristal contiene seis grupos metilo, y se considera como el mejor colorante primario para teñir por el método de Gram.
La facultad de las células para tomar la coloración Gram no es propia de toda sustancia viviente, sino que se limita casi en absoluto a hongos y bacterias. Así vemos que las células de plantas y animales superiores no conservan la primera coloración; los mohos se tiñen con cierta irregularidad; los gránulos de micelios propenden retener el colorante. La reacción de Gram no es infalible ni constante; puede variar con el tiempo del cultivo y el pH del medio, y quizá por otras causas.

Teorías
Un microorganismo gram positivo debe presentar una pared celular sana. El mismo microorganismo, si sufre daño de la pared por una u otra causa, se vuelve gram negativo. Esto indica la importancia de la pared para la retención o el escape del colorante. Una posible teoría del mecanismo de tinción es la siguiente:
El colorante básico entra al microorganismo, donde forma con el yodo una laca insoluble en agua. El alcohol o la acetona empleados para aclarar, deshidrata las paredes de los microorganismos grampositivos, tratados con mordiente, y forma una barrera que la laca no puede atravesar. En las células gramnegativas, los lípidos de la pared (más abundantes que en las células grampositivas) se disuelven por este tratamiento, lo que permite el escape del complejo de cristal violeta con yodo. Algunos autores objetan esta teoría, pero es indudable la importancia general de la pared celular.
Varias son las teorías emitidas para explicar el mecanismo de la tinción de Gram. Stearn y Stearn (1923) basan la suya en una combinación química entre el colorante y las proteínas de las bacterias, Las proteínas y aminoácidos son cuerpos anfóteros, esto es, tienen la facultad de reaccionar con ácidos y con bases, gracias a sus grupos amino y carboxilo; en soluciones ácidas, reaccionan con los ácidos, y en soluciones alcalinas lo hacen con las bases.
Stearn y Stearn comprobaron que la reacción de tinción de las bacterias obedece en gran parte a su contenido proteínico; estos microorganismos se conducen como cuerpos anfóteros, al combinarse con colorantes ácidos en soluciones ácidas y con los básicos en medio alcalino. La combinación con ambos tipos de colorante no se produce en el “punto isoeléctrico”. Como los microorganismos contienen más de una proteína, ese punto no tiene un valor preciso y definido, sino que constituye más bien una gama o escala que comprende dos o tres unidades de pH. Según Stern y Stearn, los microorganismos grampositivos tienen una escala isoeléctrica de pH inferior a la de los microorganismos gramnegativos; y, a base de sus datos experimentales, deducen las siguientes conclusiones:
1. Los microorganismos grampositivos pueden hacerse gramnegativos al aumentar la acidez.
2. Los microorganismos gramnegativos pueden hacerse grampositivos al aumentar la alcalinidad.
3. Los microorganismos de reacción positiva a los colorantes ácidos pueden hacerse gramnegativos por aumentar la alcalinidad.
4. Los microorganismos de reacción positiva a los colorantes básicos pueden hacerse gramnegativos por aumentar la acidez.
5. En la zona isoeléctrica característica de cada especie es muy escasa la tendencia a retener cualquier colorante.
6. Parece estar bien demostrado que las proteínas de las bacterias no son simples, sino más bien una débil combinación de sustancias proteínicas con otras lipoideas o grasas.
7. La materia grasa extraída de los microorganismos grampositivos difiere de la obtenida de los microorganismos gramnegativos, en que la primera contiene una proporción mucho mayor de ácidos no saturados que muestren gran afinidad por los agentes oxidantes. Todos los mordientes (como el yodo) empleados en la coloración Gram son oxidantes; su efecto, en general, consiste en dar a la sustancia oxidada un carácter más ácido. Esto aumenta la afinidad de un microorganismo por los colorantes básicos.
8. El cambio de respuesta a la coloración de Gram con el tiempo es propio, sobre todo, de los microorganismos débilmente grampositivos cultivados en los medios que contengan sustancias capaces de fermentar, y cuya reacción se vuelve ácida en el curso del desarrollo.
Gianni (1952) comprobó que los microorganismos grampositivos Bacillus subtilis y B. anthracis tomaban negativamente el Gram cuando los cultivos databan de dos a tres horas. Luego se desarrollaba la sustancia grampositiva debajo de la pared celular, para invertir la reacción.
Otra explicación de la reacción de Gram puede ser la posible existencia de una capa exterior alrededor de un núcleo gramnegativo.
Libenson y Mcllroy, han comunicado que si la reacción grampositiva depende de que se forme una combinación compleja entre los componentes de la coloración de Gram y las proteínas de la pared celular, sería de esperar que las bacterias desintegradas por medios físicos retuviesen este tinte, ya que ese tratamiento no podría cambiar el carácter químico de los materiales de dicha pared. Por el contrario, los gérmenes grampositivos desintegrados pierden su capacidad de retener el colorante primario y toman negativamente el Gram.
La pared celular de los microorganismos grampositivos y gramnegativos es permeable al violeta cristal. Sin embargo, la de los primeros no lo es al complejo de yodo y colorante formado en el interior de la célula. Los resultados experimentales obtenidos con una difusión celular exenta de proteínas, y la escasa solubilidad del complejo de yodo y violeta cristal en alcohol y acetona, parecen sustentar la opinión de que la reacción grampositiva consiste esencialmente en la formación, dentro de la célula, de una cantidad apreciable de complejo de yodo y colorante difícil de eliminar con el disolvente. La pared celular de los microorganismos grampositivos, a diferencia de la de los gramnegativos, sería prácticamente impermeable al violeta cristal. Los microorganismos aparecerán teñidos después de tratarlos con violeta cristal, por ser absorbido el colorante en la superficie externa de la pared celular, y el disolvente eliminará sin dificultad el complejo formado después del tratamiento con yodo.
Ni los grupos sulfhidrilo ni las proteínas básicas han influido específicamente en el mecanismo del colorante de Gram.
Libenson y Mcllroy han sostenido que la permeabilidad de la pared celular al violeta cristal, la escasa solubilidad del complejo de yodo y colorante en alcohol y acetona, y el libre acceso del disolvente al complejo constituido, son los principales factores que intervienen en el mecanismo de esa coloración.

Técnica de la coloración gram

Fijar un frotis
Con la ayuda de un mechero, flamear un asa bacteriológica y esperar que enfríe un poco.
Tomar el asa (previamente flameada) y con ésta tomar un poco de muestra.
Una vez obtenida una pequeña cantidad de la muestra (con el asa), hacer que ésta tenga contacto con una lámina portaobjetos, la cual servirá para depositar la muestra contenida en el asa.
Con el asa (conteniendo la muestra) sobre la lámina portaobjetos, proceder a realizar la extensión de la muestra en el portaobjetos mediante movimientos giratorios (dar vueltas con el asa) sobre la lámina, de tal forma que al terminar la extensión, tengamos como producto una espiral en la parte media de la lámina.
Esperar que seque al aire libre o ayudarse con la llama de un mechero para fijar la muestra, teniendo en cuenta que el calor no debe ser directo (sólo se pasa por la llama), puesto que el calor excesivo puede cambiar la morfología celular de las bacterias a observar. El calor deseable es aquél en el que el portaobjetos sea apenas demasiado caliente para ser colocado sobre el dorso de la mano.

Tinción
Con violeta cristal o violeta de genciana, utilizando una cantidad suficiente de dicho colorante sobre la muestra, como para lograr cubrirla por completo. Se deja actuar al colorante por 1 minuto. Esta tinción de 1 minuto está dada para trabajar a una temperatura ambiente de 25 ºC.

Enjuague
Al transcurrir el minuto, se debe enjuagar la lámina conteniendo la muestra con agua corriente. Para realizar el lavado, se debe tener en cuenta que el chorro de agua NO debe caer directamente sobre la muestra, ésta debe caer sobre la parte superior de la lámina que no contiene muestra. El chorro debe ser un chorro delgado, aproximadamente de medio a un centímetro de espesor. También el enjuague se debe realizar poniendo la lámina en posición inclinada hacia abajo...

Mordiente
Una vez enjuagado el portaobjetos, se aplica como mordiente yodo o lugol durante 1 minuto más.
El mordiente es cualquier sustancia que forme compuestos insolubles con colorantes y determine su fijación a las bacterias

Decoloración
Pasado el minuto de haber actuado el mordiente, el frotis se decolora con etanol al 75 %, etanol al 95 %, acetona o alcohol-acetona, hasta que ya no escurra más líquido azul. Para esto se utiliza el gotero del frasco del decolorante. Se van añadiendo cantidades suficientes del decolorante, hasta lograr que éste salga totalmente transparente, es decir, hasta que ya no escurra más líquido azul

Lavado y secado
Lavar con agua para quitar los residuos de decolorante y esperar que seque la lámina al aire libre o con la ayuda de la llama de un mechero de la forma anteriormente descrita.

Tinción de contraste
Una vez que la lámina ya secó, procedemos a teñir nuevamente, pero esta vez se va a utilizar un colorante de contraste como por ejemplo la safranina, dejar actuar durante 1 minuto.

Nuevo enjuague
Pasado el minuto correspondiente, se procede a enjuagar la lámina con agua, se escurre el agua sobrante y se seca en la forma anteriormente descrita.
De esta manera, ya tendremos listo el frotis para su respectiva observación microscópica.

Bacterias resistentes a la tinción Gram
La siguientes bacterias de naturaleza grampositiva, tiñen como gramnegativas:
Mycobacterias (están encapsuladas)
Mycoplasmas (no tienen pared)
Formas L (pérdida ocasional de la pared)
Protoplastos y esferoplastos (eliminación total y parcial de la pared, respectivamente)

Utilidades
En el análisis de muestras clínicas suele ser un estudio fundamental por cumplir varias funciones:
Identificación preliminar de la
bacteria causal de la infección.
Utilidad como control calidad del aislamiento bacteriano. Los
morfotipos bacterianos identificados en la tinción de Gram se deben de corresponder con aislamientos bacterianos realizados en los cultivos. Si se observan mayor número de formas bacterianas que las aisladas hay que reconsiderar los medios de cultivos empleados así como la atmósfera de incubación.
A partir de la tinción de Gram pueden distinguirse varios morfotipos distintos: Los
cocos son de forma esférica. Pueden aparecer aislados después de la división celular (Micrococos), aparecer por pares (Diplococos), formar cadenas (Estreptococos), o agruparse de manera irregular (Estafilococos).
Los
bacilos poseen forma alargada. En general suelen agruparse en forma de cadena (Estreptobacilos) o en empalizada.
También pueden distinguirse los
espirales, que se clasifican en espirilos si son de forma rígida o espiroquetas si son blandas y onduladas. Si por el contrario, poseen forma de "coma", o curvados, entonces se los designa vibriones.

Fundamentos de diferenciación de Gram positivo y Gram negativo
Los fundamentos de la técnica se basan en las diferencias entre las
paredes celulares de las bacterias Gram positivas y Gram negativas
La pared celular de las bacterias Gram positivas posee una gruesa capa de
peptidoglucano, además de dos clases de ácidos teicoicos: Anclado en la cara interna de la pared celular y unido a la membrana plasmática, se encuentra el ácido lipoteicoico, y más en la superficie, el ácido teicoico que está anclado solamente en el peptidoglucano (también conocido como mureína)
Por el contrario, la capa de peptidoglucano de las Gram negativas es delgada, y se encuentra unida a una segunda membrana plasmática exterior (de composición distinta a la interna) por medio de lipoproteínas. Tiene una capa delgada de peptidoglicano unida a una membrana exterior por
lipoproteínas. La membrana exterior está hecha de proteína, fosfolípido y lipopolisacárido.
Por lo tanto, ambos tipos de bacterias se tiñen diferencialmente debido a estas direrencias constitutivas de su pared. La clave es el peptidoglicano, ya que es el material que confiere su rigidez a la pared celular bacteriana, y las Gram positivas lo poseen en mucha mayor proporción que las Gram negativas.
La diferencia que se observa en la resistencia a la decoloración, se debe a que la membrana externa de las Gram negativas es soluble en
solventes orgánicos, como por ejemplo la mezcla de alcohol/acetona. La capa de peptidoglucano que posee es demasiado delgada como para poder retener el complejo de cristal violeta/yodo que se formó previamente, y por lo tanto este complejo se escapa, perdiéndose la coloración azul-violácea. Pero por el contrario, las Gram positivas, al poseer una pared celular más resistente y con mayor proporción de peptidoglicanos, no son susceptibles a la acción del solvente orgánico, sino que este actúa deshidratando los poros cerrándolos, lo que impide que pueda escaparse el complejo cristal violeta/yodo, y manteniendo la coloración azul-violácea.

Causas que alteran la tinción de Gram [editar]
I: Edad de la bacteria.
II: Errores del operador.
III: Uso de antibióticos
A pesar de la gran utilidad del la tinción de Gram, este método debe ser valorado con precaución, ya que la reacción puede variar según la edad de las células y la técnica empleada, por ella junto a la muestra deben teñirse controles con grampositivas y gramnegativas
.

frotis

Un frotis de sangre es un proceso científico que consiste en el extendido de una gota de sangre en la superficie de un portaobjetos o de un cubreobjetos, con el fin de analizarla posteriormente.
Es más adecuado emplear sangre que aun no ha estado en contacto con el anticoagulante, pues este podría alterar los resultados (algunos anticoagulantes tienden a deformar las células de la sangre).
Su realización es de vital importancia para obtener una orientación de:
La valoración de la estimulación eritropoyetica.
Las anomalías en la maduración nuclear y citoplásmica de las células hemáticas.
Los trastornos en la arquitectura de las células al formarse en la médula osea.
Las alteraciones singulares en la forma de las células, que son una identificación especifica de algunas enfermedades.
Algún indicador de los efectos nocivos de la quimioterapia y de la radioterapia.
La diferenciación y recuento de los elementos celulares de la sangre.
La fidelidad de la información obtenida de ellos, depende en gran parte de la calidad de las extensiones. Estas no deben ser demasiado gruesas porque las células se amontonarían y no podrían ser reconocidas, ni diferenciarse, ni demasiado delgadas porque las células se deformarían, distorsionarían y destruirían. Por eso los frotis de sangre deben ser bien nivelados y para obtener buenos resultados es necesario que:
Tanto portaobjetos como cubreobjetos deben estar bien limpios y desengrasados (prefentemente nuevos).
La gota de sangre usada para la preparación de el frotis no debe ser muy grande ni pequeña, de preferencia de el tamaño de la cabeza de un alfiler (entre 2 y 3 mm), obtenida por punción capilar.
La sangre no haya estado en contacto con anticoagulante, pues podría deformarse la morfología celular si pasase esto.
La lectura de las extensiones se hará en las zonas donde los eritrocitos "casi se tocan".

Extensión en el portaobjetos
Para llevar a cabo las extensiones en portaobjeto se coloca una gota de sangre de 3 a 4 mm de diámetro, a unos 2 o 3 cm de uno de los extremos de el portaobjetos este se coloca en una superficie plana y lisa. Con el borde de otro portaobjeto, con el que se toca la gota de sangre, la cual se desliza por capilaridad a todo lo largo de el canto de dicho portaobjeto y con un movimiento rápido y uniforme, en un angulo de 45 grados se desliza el portaobjetos dejando una capa de sangre en la superficie de el otro. El espesor del extendido debe ser delgado.
Obtenido de "
http://es.wikipedia.org/wiki/Frotis"

practica 9

Práctica #9 prueba de aglutinación en sangre
Operar equipo de laboratorio
Prueba de aglutinación de sangre
Tipo de prueba: tipo sanguíneo
El alumno de laboratorio de análisis clínicos debe realizar una prueba en Tejido sanguíneo (HB) para poder conocer, observar identificar y finalmente aplicar la prueba de aglutinación en sangre que da como resultado el tipo sanguíneo del individuo.
Materiales† Sangre fresca 2.5ml† Tubo de tapón morado con anticoagulante† Palillos de madera† Placa de porcelana escavada para tipo sanguíneo† Algodón con alcohol (2 torundas sin alcohol)† Masquen tape para etiquetar placa† Tipificadores para tipo sanguíneo (reactivo), Anti-A, Anti-B, Anti-D.† Papel secante, papel para cubrir mesa† Mesa de laboratorio
† Pipeta Pasteur (bulbo)
Desarrollo prueba de aglutinación
1. Técnica de ven punción2. Una vez obtenida la sangre fresca del paciente en volumen de 2.5 ml, se trasvasa al tubo de tapón morado con anticoabulante en el que se le dan ligeros movimientos para que se mezcle con el anticoabulante y poder ser utilizada. Se utiliza la pipeta Pasteur con bulbo de extracción y se extrae una cantidad de sangre del tubo ya indicado para puntear una pequeña gota en cada excavación en la placa de porcelana, el resto de sangre se deposita en el tubo, se enjuaga a la pipeta y se conserva cuidadosamente. Una vez punteada la placa escavada de porcelana se le agrega una gota de reactivo en cada excavación para poder obtener una reacción entre sangre y suero sanguíneo.
1. Se aplica el reactivo Anti-A como numero 1 es de color2. Se aplica el Anti-B como numero 2 una ves obtenida la prueba de aglutinación debemos reportar nuestro trabajo dentro del marco, preanalítico, analítico, y pos analítico.
NOTA Las pruebas realizadas desde medio de cultivo practica #1 asta la practica #9 serán reportadas en forma ordenada, con separadores internos de practica y una pestaña del lado derecho superior del documento indicando el numero de practica y nombre.Durante el trayecto de este trabajo el alumno debe clasificar sus practicas acomodándolas de tal forma en cada 1 de las etapas ya mencionadas preanalítica, analítica, pos analítica, ósea que las practicas deben de estar dentro de este marco mencionado.La practica final de aglutinación en plasma y aglutinación en sangre deben tener el marco de pre-análisis, análisis y pos análisis.

practica 8

Practica#8 Pruebas de aglutinación en suero plasmático
Pruebas de aglutinación en suero plasmático.
Prueba de laboratorio denominada reacciones febriles por aglutinación
Investigar el concepto de aglutinación. Anexar la investigación en el área de pruebas serológicas. Cuadro de enfermedad de tifoidea paratifoidea anexar, la investigación de salmonella y gráficos de brucella abortus y proteus.
Investigar las características coloniales de cada uno de los microorganismos pertenecientes a las heterobacterias.
Materiales† Paciente† Jeringa 5ml† Torniquete† Torundas alcoholizadas† Tubo con tapón rojo sin anticoagulante† Laminilla de cristal para reacciones febriles o excavada† Palillos de madera† Papel secante† Centrifuga† Tubo de ensaye(vacio)† Microscopio† Gradilla
Técnica de ven punción la cual ya se dio anteriormente.
Una vez extraída la sangre se toma el tiempo de coagulación, desde su salida asta que esta coagule la gradilla. Unas ves coagulada retiramos el tapón del tubo, con número de mesa, datos del paciente y fecha, y introducimos de forma ordenada a la centrifugada, para operarla la centrifuga a 1500 revoluciones por minuto durante 5 minutos.
Ya centrifugada la sangre se retira de la centrifuga, se vierte el plasma al tubo vacio, se desecha el paquete sanguíneo, utilizando la NOM-087 de la cual ustedes deben de dar un pequeño reporte.Una vez que se tenga el plasma en el tubo indicado se realiza el conteo en la laminilla de cristal utilizando una pipeta Pasteur con bulbo
Ya punteada la muestra de plasma en la laminilla de cristal se mezcla con pedacitos de palillos de madera, utilizando un pedazo por Cada serotipo que es H, O, A, B brucella abortus, proteus 0x19Ya mezclados los serotipos se les da un ligero movimiento de izquierda a derecha y de enfrente hacia atrás para estar seguro que la mezcla sea correcta.
NOTA: Se le aplica una gota de reactivo febriclean a cada uno de los serotipos ya mencionados para poder obtener el resultado en esta prueba el resultado es aglutinación.
La observación es macroscópica atrás luz asi como observación macroscópica en objetivo 10x de esta manera se verificara el proceso de aglutinación que se observa en forma punteada como si tuviera arenilla el liquido observando y se le determina como t, si no existe unos de estos datos, y la muestra se ve homogénea se determina como negativo.

frotis

Un frotis de sangre es un proceso científico que consiste en el extendido de una gota de sangre en la superficie de un portaobjetos o de un cubreobjetos, con el fin de analizarla posteriormente.
Es más adecuado emplear sangre que aun no ha estado en contacto con el anticoagulante, pues este podría alterar los resultados (algunos anticoagulantes tienden a deformar las células de la sangre).
Su realización es de vital importancia para obtener una orientación de:
La valoración de la estimulación eritropoyetica.
Las anomalías en la maduración nuclear y citoplásmica de las células hemáticas.
Los trastornos en la arquitectura de las células al formarse en la médula osea.
Las alteraciones singulares en la forma de las células, que son una identificación especifica de algunas enfermedades.
Algún indicador de los efectos nocivos de la quimioterapia y de la radioterapia.
La diferenciación y recuento de los elementos celulares de la sangre.
La fidelidad de la información obtenida de ellos, depende en gran parte de la calidad de las extensiones. Estas no deben ser demasiado gruesas porque las células se amontonarían y no podrían ser reconocidas, ni diferenciarse, ni demasiado delgadas porque las células se deformarían, distorsionarían y destruirían. Por eso los frotis de sangre deben ser bien nivelados y para obtener buenos resultados es necesario que:
Tanto portaobjetos como cubreobjetos deben estar bien limpios y desengrasados (prefentemente nuevos).
La gota de sangre usada para la preparación de el frotis no debe ser muy grande ni pequeña, de preferencia de el tamaño de la cabeza de un alfiler (entre 2 y 3 mm), obtenida por punción capilar.
La sangre no haya estado en contacto con anticoagulante, pues podría deformarse la morfología celular si pasase esto.
La lectura de las extensiones se hará en las zonas donde los eritrocitos "casi se tocan".